skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Ziyou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ground contact modeling for multilegged locomotion is challenging due to the possibility of multiple slipping legs. To understand the interplay of contact forces among multiple legs, we integrated a robot with six high-precision 6 degree-of-freedom (DoF) force-torque sensors, and measured the wrenches (forces and torques) produced in practice. Here, we present an in situ calibration procedure for simultaneously measuring all foot contact wrenches of a hexapod using 6-DoF load cells installed at the hips. We characterized transducer offset, leg gravity offset, and the wrench transformation error in our calibration model. Our calibration reduced the root-mean-square-error (RSME) by 63% for forces and 90% for torques in the residuals of the robot standing in different poses, compared with naive constant offset removal. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Multi-legged robots with six or more legs are not in common use, despite designs with superior stability, maneuverability, and a low number of actuators being available for over 20 years. This may be in part due to the difficulty in modeling multi-legged motion with slipping and producing reliable predictions of body velocity. Here, we present a detailed measurement of the foot contact forces in a hexapedal robot with multiple sliding contacts, and provide an algorithm for predicting these contact forces and the body velocity. The algorithm relies on the recently published observation that even while slipping, multi-legged robots are principally kinematic, and employ a friction law ansatz that allows us to compute the shape-change to body-velocity connection and the foot contact forces. This results in the ability to simulate motion plans for a large number of contacts, each potentially with slipping. Furthermore, in homogeneous environments, this kind of simulation can run in (parallel) logarithmic time of the planning horizon. 
    more » « less